首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20453篇
  免费   3425篇
  国内免费   2349篇
化学   14673篇
晶体学   255篇
力学   1290篇
综合类   201篇
数学   2150篇
物理学   7658篇
  2024年   22篇
  2023年   457篇
  2022年   433篇
  2021年   660篇
  2020年   826篇
  2019年   786篇
  2018年   641篇
  2017年   627篇
  2016年   951篇
  2015年   932篇
  2014年   1083篇
  2013年   1404篇
  2012年   1838篇
  2011年   1926篇
  2010年   1285篇
  2009年   1131篇
  2008年   1325篇
  2007年   1323篇
  2006年   1180篇
  2005年   1033篇
  2004年   741篇
  2003年   644篇
  2002年   581篇
  2001年   445篇
  2000年   424篇
  1999年   495篇
  1998年   377篇
  1997年   385篇
  1996年   306篇
  1995年   307篇
  1994年   300篇
  1993年   250篇
  1992年   197篇
  1991年   198篇
  1990年   181篇
  1989年   117篇
  1988年   88篇
  1987年   90篇
  1986年   62篇
  1985年   46篇
  1984年   43篇
  1983年   24篇
  1982年   25篇
  1981年   18篇
  1980年   13篇
  1975年   2篇
  1957年   4篇
  1936年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The recognition of targets such as biomacromolecules, viruses and cells by their aptamers is crucial in aptamer-based biosensor platforms and research into protein function. However, it is difficult to evaluate the binding constant of aptamers and their targets that are hard to purify and quantify, especially when the targets are undefined. Therefore, we aimed to develop a modified capillary electrophoresis based method to determine the dissociation constant of aptamers whose targets are hard to quantify. A protein target, human thrombin, and one of its aptamers were used to validate our modified method. We demonstrated that the result calculated by our method, only depending on the aptamer’s concentrations, was consistent with the classical method, which depended on the concentrations of both the aptamers and the targets. Furthermore, a series of DNA aptamers binding with avian influenza virus H9N2 were confirmed by a four-round selection of capillary electrophoresis–systematic evolution of ligands by exponential enrichment, and we identified the binding constant of these aptamers by directly using the whole virus as the target with the modified method. In conclusion, our modified method was validated to study the interaction between the aptamer and its target, and it may also advance the evaluation of other receptor–ligand interactions.  相似文献   
992.
In this study, the partial filling technique on both polycationic polymer hexadimethrine bromide (HDB) modified capillary and eCAP neutral capillary were systematically compared in order to enhance the enantioseparation ability of bromobalhimycin as CE additive. The separation conditions, such as pH, the plug length, and the concentration of bromobalhimycin, etc., were optimized in order to obtain satisfactory separations. As expected, for all tested 28 N‐benzoylated amino acids, up to five times higher enantioresolutions were obtained on the eCAP neutral capillary compared to that on the polycationic polymer hexadimethrine bromide modified capillary. Moreover, 26 of 28 tested racemic compounds were almost baseline‐ resolved without observing any interference from the front of the plug of bromobalhimycin. Although the limitation of longer running time on the neutral capillary, it allows the use of higher content of bromobalhimycin in the running buffer without any interference on the detection of analytes when enantioseparations are more difficult to obtain.  相似文献   
993.
Methyl-3-quinoxaline-2-carboxylic acid (MQCA) is a possible residue marker for three quinoxaline veterinary medicines (olaquindox, mequindox, and quinocetone). The wide application of mequindox/quinocetone or the illegal use of olaquindox leads to MQCA residue in animal’s original food, thereby threatening the safety of human food. The indirect competitive enzyme-linked immunosorbent assay (IC-ELISA) with a specific coating antigen and monoclonal antibody (MAB) was established and optimized for detecting MQCA in swine liver. Samples were acidified with 2 mol?l?1 hydrochloric acid, extracted with ethyl acetate–hexane–isopropanol (8?+?1?+?1, v/v/v) and then detected by IC-ELISA. The logarithm correlation of standards to OD values ranged from 0.2 to 200 μg?l?1, with IC50 of 6.46 μg?l?1. Negligible cross-reactivity happened to five quinoxaline antibiotics (olaquindox, mequindox, quinocetone, carbadox, and cyadox) and the metabolite of carbadox and cyadox (quinoxaline-2-carboxylic acid). When spiked with 1 to 100 μg?kg?1 of MQCA, the recoveries ranged from 85.44 to 100.02 %, with the intra-assay coefficient of variation (CV) of 6.64–10.57 % and inter-assay CV of 7.29–10.88 %. The limit of detection for MQCA was 1.0 μg?kg?1 in swine liver. Furthermore, incurred samples were detected by the IC-ELISA and then conformed by a reported LC/MS/MS method, it shown that there was good correlation between the two methods. All these results indicated that the IC-ELISA method is appropriate for surveillance MQCA residue in animal tissues.
Figure
Synthesis route of 2-acrylic-1,4-binitrogen-quinoline combined to BSA(OVA) by active ester method  相似文献   
994.
Two‐phase solvent system plays crucial role in successful separation of organic compounds using counter‐current chromatography (CCC). An interesting two‐phase solvent system, composed of chloroform/ethyl acetate/methanol/water, is reported here, in which both phases contain sufficient organic solvents to balance their dissolving capacities. Adjusting the solvent system to get satisfactory partition coefficients (K values) for target compounds becomes relatively simple. This solvent system succeeded in sample preparation of aconitine (8.07 mg, 93.69%), hypaconitine (7.74 mg, 93.17%), mesaconitine (1.95 mg, 94.52%) from raw aconite roots (102.24 mg, crude extract), benzoylmesaconine (34.79 mg, 98.67%) from processed aconite roots (400.01 mg, crude extract), and yunaconitine (253.59 mg, 98.65%) from a crude extract of Aconitum forrestii (326.69 mg, crude extract).  相似文献   
995.
The most recognized and employed model of the solvation equilibration in the ionic solutions was proposed by Eigen and Tamm, in which there are four major states for an ion pair in the solution: the completely solvated state, 2SIP (double solvent separate ion pair), SIP (single solvent separate ion pair), and CIP (contact ion pair). Eigen and Tamm suggested that the transition from SIP to CIP is always the slowest step during the whole pairing process, due to a high free energy barrier between these two states. We carried out a series of potential of mean force calculations to study the pairing free energy profiles of two sets of model mono- atomic 1:1 ion pairs 2.0:x and x:2.0. For 2.0:x pairs the free energy barrier between the SIP and CIP states is largely reduced due to the salvation shell water structure. For these pairs the SIP to CIP transition is thus not the slowest step in the ion pair formation course. This is a deviation from the Eigen-Tamm model.  相似文献   
996.
Owing to the importance of drug delivery in cancer or other diseases’ therapy, the targeted drug delivery (TDD) system has been attracting enormous interest. Herein, we model the TDD system and design a novel rod-like nanocarrier by using the coarse grained model-based density functional theory, which combines a modified fundamental measure theory for the excluded-volume effects, Wertheim’s first-order thermodynamics perturbation theory for the chain connectivity and the mean field approximation for van der Waals attraction. For comparison, the monomer nanocarrier TDD system and the no nanocarrier one are also investigated. The results indicate that the drug delivery capacity of rod-like nanocarriers is about 62 times that of the no nanocarrier one, and about 6 times that of the monomer nanocarriers. The reason is that the rod-like nanocarriers would self-assemble into the smectic phase perpendicular to the membrane surface. It is the self-assembly of the rod-like nanocarriers that yields the driving force for the targeted delivery of drugs inside the cell membrane. By contrast, the conventional monomer nanocarrier drug delivery system lacks the driving force to deliver the drugs into the cell membrane. In short, the novel rod-like nanocarrier TDD system may improve the drug delivery efficiency. Although the model in this work is simple, it is expected that the system may provide a new perspective for cancer targeted therapy.  相似文献   
997.
Core–shell‐structured mesoporous silica spheres were prepared by using n‐octadecyltrimethoxysilane (C18TMS) as the surfactant. Hollow mesoporous carbon spheres with controllable diameters were fabricated from core–shell‐structured mesoporous silica sphere templates by chemical vapor deposition (CVD). By controlling the thickness of the silica shell, hollow carbon spheres (HCSs) with different diameters can be obtained. The use of ethylene as the carbon precursor in the CVD process produces the materials in a single step without the need to remove the surfactant. The mechanism of formation and the role played by the surfactant, C18TMS, are investigated. The materials have large potential in double‐layer supercapacitors, and their electrochemical properties were determined. HCSs with thicker mesoporous shells possess a larger surface area, which in turn increases their electrochemical capacitance. The samples prepared at a lower temperature also exhibit increased capacitance as a result of the Brunauer–Emmett–Teller (BET) area and larger pore size.  相似文献   
998.
999.
In this work, we have successfully synthesized a new family of chiral Schiff base–phosphine ligands derived from chiral binaphthol (BINOL) and chiral primary amine. The controllable synthesis of a novel hexadentate and tetradentate N,O,P ligand that contains both axial and sp3‐central chirality from axial BINOL and sp3‐central primary amine led to the establishment of an efficient multifunctional N,O,P ligand for copper‐catalyzed conjugate addition of an organozinc reagent. In the asymmetric conjugate reaction of organozinc reagents to enones, the polymer‐like bimetallic multinuclear Cu? Zn complex constructed in situ was found to be substrate‐selective and a highly excellent catalyst for diethylzinc reagents in terms of enantioselectivity (up to >99 % ee). More importantly, the chirality matching between different chiral sources, C2‐axial binaphthol and sp3‐central chiral phosphine, was crucial to the enantioselective induction in this reaction. The experimental results indicated that our chiral ligand (R,S,S)‐ L1 ‐ and (R,S)‐ L4 ‐based bimetallic complex catalyst system exhibited the highest catalytic performance to date in terms of enantioselectivity and conversion even in the presence of 0.005 mol % of catalyst (S/C=20 000, turnover number (TON)=17 600). We also studied the tandem silylation or acylation of enantiomerically enriched zinc enolates that formed in situ from copper‐ L4 ‐complex‐catalyzed conjugate addition, which resulted in the high‐yield synthesis of chiral silyl enol ethers and enoacetates, respectively. Furthermore, the specialized structure of the present multifunctional N,O,P ligand L1 or L4 , and the corresponding mechanistic study of the copper catalyst system were investigated by 31P NMR spectroscopy, circular dichroism (CD), and UV/Vis absorption.  相似文献   
1000.
The introduction of sulfur atoms onto target molecules is an important area in organic synthesis, in particular in the synthesis of pharmaceutical compounds, and a wide variety of sulfuration agents have been developed for thionation reactions over the past few decades. In this Focus Review, we collect and summarize the C? S bond‐formation reactions that have been used to construct C? S bonds in natural products and pharmaceutical compounds.  相似文献   
[首页] « 上一页 [95] [96] [97] [98] [99] 100 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号